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Abstract Transition 10 predominantly chaotic motion in Hamiltonian systems with two degrees 
of freedom is described by a complicated function of frrquency, which is called the critical 
function. A gaph of this function is a fractal sel with the local stricture, which is believed 
to depend only on the arithmetic nature of lhe frequency. We calculated numerically fractal 
dimensions of this function for a few typical systems using the method of modular smoothing 
and an efficient algorithm for computation of the fractal dimensions. The dimensions which 
measure the complexity of the &tal are indeed the same, within the e ror  bounds, and are 
equal to the dimension of the exponent of the Bjuno function, which is a purely arithmetic 
function. 

1. Introduction 

The phase space of a typical nonlinear Hamiltonian system with two degrees of freedom 
consists of a mixture of regular and chaotic orbits with a complicated fractal boundary 
between them. The regular orbits are restricted on KAM tori and are quasi-periodic while 
the chaotic orbits are unrestricted with a broad frequency spectrum. As the nonlinearity 
is increased many of the KAM tori disappear, and a measure of the phase space with 
predominantly irregular orbits increases. Typical features of the transition to predominantly 
irregular motion are usually studied using one parameter families of area-preserving maps or 
non-autonomous Hamiltonian system with one and a half degrees of freedom and continuous 
time [l]. 

Typical and most studied examples are the Taylor-Chirikov standard map (SM), given 
by the following equations: 

y’ = y +ksin(x) x’ = x + y’ (1) 

and the two-waves model of Zaslavsky, Escande and Doveil given by the following 
Hamiltonian: 

(2) 
It is generally believed that the typical properties of these systems are also present in the 
corresponding complex area-preserving maps and systems with a complex Hamiltonian 
[2-4]. Such systems are generally much easier to analyse both algorithmically and 
analytically than the real Hamiltonian systems. An example of such systems which we 
shall use in this paper is the semi-standard map [2] given by 

H = p 2 / 2  - k(expiq + expitq - t ) )  . 

y’=y+fikexp(ix)  x ‘ = x + y ’ .  (3) 
The KAM tori of these systems are parametrized by an irrational frequency U of the 

quasi-periodic trajectories on the tori. At zero value of the parameter k the system is 

0305-4470/94/155201+08519.50 @ 1994 LOP Publishing Ltd 5201 



5202 N Burif et a1 

V 

Figure 1. The figure presents the critical hrnction of the semi-standard map 

integrable and the phase space is filled by invariant tori. For a sufficiently large value of 
the parameter the KAM toms with a frequency v is no longer a smooth function of the 
unperturbed torus [5 ] .  The smallest value of the perturbation parameter k at which the KAM 
torus with the frequency U is destroyed is called the critical perturbation. The dependence 
of the critical perturbation on the frequency is called the critical function, and is denoted by 
K ( w )  [Z]. Let us remark that an analogous critical function can be defined in the case of a 
more general Hamiltonian system with two degrees of freedom which satisfy conditions of 
KAM theory. In this case we consider a one parameter family of non-autonomous systems 
defined on hyperplanes of constant energy. 

The critical function was introduced in [21 and since then has been intensely studied [6] .  
Properties of this complicated fractal function are described in detail in 131. It is believed 
that the local structure of the critical functions depends essentially only on the arithmetic 
properties of the frequency, and not on the dynamics. The aim of this paper is to present 
the calculations of fractal dimensions of the critical functions for a few typical Hamiltonian 
systems, and to show that these dimensions are indeed independent of the dynamics. Thus, 
the geomenic complexity of the critical functions for a class of Hamiltonian systems does 
not depend on the dynamics. 

2. Critical functions and the method of modular smoothing 

General properties of the critical functions follow from KAM theory [IO]. A typical example 
of such functions is given in figure 1. It is zero and continuous at all rational values 
of the frequency, and non-zero and discontinuous at irrational frequencies satisfying some 
Diophantine condition. A necessary condition on the frequency such that K ( u )  is non- 
zero is still not known. There is clear evidence of a self-similar structure of the critical 
function. Local maxima are at noble numbers, that is numbers which are related to a 
golden mean y by a finite number of Gauss transformations U -+ U' = l / v  - [ l /u ]  where 
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Figure 2. The function L r ( v )  for the semi-standad map 

[ l lu ]  is the integer part of l/v. Properties of the critical function are a consequence of 
the famous small divisors that appear in the perturbation expansion of the KAM ton, and 
other related problems, as in the problem of Siege1 disks for analytic maps of a complex 
plain [7, 41 and in the context of diffeomorphisms of a circle [8, 91. Detailed analyses of 
a perturbation expansion of the KAM torus with frequency v reveals that the singularities 
at rational values of the frequency are all of the same functional form. The fact that the 
singularities are of the same form enables one to express transformation properties of the 
critical function under the action of an inversion and a unit translation on the frequency, 
by functions of the frequency which can be easily interpolated by smooth functions. This 
was used in [3] to introduce the method of modular smoothing, which provides us with an 
efficient and accurate approximate computation of the critical function which involves only 
the perturbation expansion to some finite and low order. (For later developments of the 
method see also [ 111 and [ 121). Direct computation of the critical function, using the Greene 
method [13] or as a radius of convergence of the KAM torus [2,3], involves estimating limits 
of infinite sequencies of periodic orbits or perturbation coefficients for each frequency. 

Here we use the method of modular smoothing for calculation of the approximate K ( v )  
at sufficiently many frequencies, which are needed for reliable estimates of the fractal 
dimensions. Let us briefly summarize the main steps in the method of modular smoothing. 

(i) A function L l ( u )  = InK(v) - vlnK(u') is a continuous function of the frequency. 
Here, as always in this paper, U' denotes U' = l / u  - [I/u].  An example is given in 
figure 2. 

(ii) Values of the function LI at rationals m l n  E [0, I] are given by the following formula: 
nb(n, m;  U) 

mb(n', mi; U) 
L , ( m / n )  = I / n  lim In (4) 

where b(n. m; U) are essentially coefficients of order n in a suitable perturbation 
expansion, and n' = m and m' = n - m [ n / m ] .  Details are given i n  [ l l ,  121. 

If the frequency U is a noble number, dy steps away from the golden mean frequency y ,  
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the relation in (i) can be iterated d, - 1 times until U' = y .  In this way we obtain 

K(u)  = K(,.)("'"''...+-') exp- [ L ~ ( U )  + L,(u' )v  + L ~ ( u " ) u u ' .  . . + L ~ ( U ~ ~ - ~ ) U ~ ~ - * ,  . . U] , 
(5) 

We have thus expressed the fractal function K ( u )  using the continuous function LI(v) .  
A good approximation of the critical function can now be obtained by calculating the 
function L l ( m / n )  at only a few m / n  with small n, and interpolating the function Ll(u)  
using a piecewise linear approximation through the points Ll(m/n) .  This can be used to 
obtain an approximate critical function at any noble frequency. For other frequencies we 
first approximate the frequency by a noble approximation, which introduces an arbitrary 
small error in the calculation of the critical function. The error in the approximate critical 
function is not more than a couple of per cent, and the structure of the singularities is well 
approximated. 

An analogous critical function is defined in the context of Siege1 disks and circle 
diffeomorphisms [4]. Yoccoz has shown that the ratios of the logarithm of the critical 
functions for these two problems and a Brjuno function (defined below) [14], which is a 
purely arithmetic function, are bounded [151. Later, Marmi [4] proved for the case of the 
semi-standard map that, provided the perturbation is small enough, the convergence of the 
Brjuno function at a frequency U is a necessary and sufficient condition for the existence 
of the KAM torus with this frequency. He also conjectured that the ratio of the logarithms 
of the critical functions for the semi-standard map and the standard map, and the Brjuno 
function are bounded. 

The Brjuno function B ( v )  is related to a modified continued fraction expansion, and 
can be uniquely defined in terms of its transformation properties with respect to the unit 
translations and inversions [4]. It satisfies the following two relations: 

B(u 4- I )  = B(-U)  = B(u) 

B(U)  - UB(U-') = -ln ~ ( u ) .  

(6) 
and for irrational U E (0, f )  

(7) 
We present numerical evidence that the fractal dimensions of the exponent of the Brjuno 
function are the same within the level of accuracy as the dimensions of the critical functions 
treated here. This again indicates that the complexity of the critical functions for a class of 
dynamical problems is of number-theoretic nature and is independent of the dynamics. 

3. Fractal dimensions of the critical functions 

In order to measure the complexity of the critical functions we use the Renyi spectre of 
fractal dimensions [16]. The dimensions can be defined as follows. We cover the graph of 
the critical function by N ( E )  volume elements of diameter E ,  and for every q = 0, 1 , 2 . .  . 
we define the generalized entropy by the following formula: 

and 
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where P8(c) is the number of points on the graph of the critical function which is in the ith 
volume element. The Renyi dimensions are defined as follows: 

H&) D ( q )  = lim - 
r -0  lnc 

For q = 0, 1, 2 one recovers the most common fractal dimensions, namely the capacity, the 
information and the correlation dimensions, respectively. Generalizations to negative and 
arbitrary real dimensions have been introduced by Badii and Politi [17], and studied intensely 
as a way of characterizing chaotic attractors in dissipative systems [18] and other fractals 
1191. However, we restrict our attention to integer positive dimensions only. Standard 
algorithms for calculating the dimensions numerically can be found, for example, in [20, 191. 

One is faced with two main problems in trying to estimate numerically the fractal 
dimensions of realistic fractals. Firstly one needs quite a large number of points on the fractal 
so that the local structure becomes apparent, and secondly a straightforward algorithm based 
on the definition is quite memory consuming since one needs a large matrix to enumerate 
the volume elements in a sufficiently fine covering. We overcome these difficulties by 
using the method of modular smoothing to calculate the critical functions, and by using a 
simple trick in order to label and count the elements of the matrix using a one-dimensional 
array. Calculation of the dimensions for the critical functions poses an additional difficulty. 
Namely, numerical calculation of the dimensions are done using large but finite subsets of 
the graph of K ( u ) ,  where us are such that K ( u )  is most easily calculated. Such u s  are the 
noble numbers, that is the most irrational numbers in the sense of their continued fraction 
approximation. In order to estimate the dimensions correctly we need to use such numbers 
to approximate the critical function at sufficiently many randomly distributed numbers. 

Let us first consider the critical function for the SSM. We use this model to show that the 
fractal dimensions of an approximate critical function obtained by the method of modular 
smoothing and the exact critical function are the same. In this case by the exact critical 
function we mean the radius of convergence of the KAM tori as a function of the frequency 
[Z]. Namely, a Fourier-Taylor expansion in the variable 6 and the parameter k of the KAM 
torus with the frequency U of the SSM can be replaced by a single Taylor expansion in a 
new variable U = k exp(-iO). The radius of convergence of this Taylor expansion turns 
out to be equal to the critical perturbation for this frequency, that is to the critical function. 
We call this radius of convergence the exact critical function. However, there are practical 
difficulties in applying this definition for calculating the critical function for frequencies 
that are quite close to a rational. For example, consider two irrationals with the same initial 
finite string in their continued fraction expansion. If this initial string is long it is practically 
impossible to distinguish the two irrationals although one of them could be quite close to a 
rational due to a large coefficient in the non-equal part of the continued fraction expansion. 
Consequently the critical function at the two irrationals could take quite different values 
due to differences in the continued fraction expansion which cannot be estimated using the 
perturbation expansion of a finite order. If the critical function is to be calculated with the 
large set of points needed for the calculation of the fractal dimensions, one needs to take 
special care to include correctly the effect of the points which are very close to the rationals, 
and for which the critical function cannot be calculated with sufficient accuracy. 

We have calculated the fractal dimensions of two sets (ut. K ( u i ) )  and ( v i ,  Ka(ui ) ) ,  
where ut = i x y - [i x y ] .  and K ( u )  and &(U) are the ‘exact’ critical function and its 
approximation by the method of modular smoothing. The results are presented in figure 3. 
Here i = I ,  2 . .  ,20000, but points too close to rationals had to be neglected since, for these 
points, we could not calculate reliably the ‘exact’ critical function. The approximation K ,  
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Figure 3. The figure illustrates equality of the capacity dimensions of the sets (v i .  K(u i ) )  and 
(U;. &(ut)) ,  where vi belong lo he se1 of 18000 points of the form vi = i x y - [ i  x y ]  for 
which the exact critical function K (U) is calculated with a sufficient accuracy. The dimensions 
are given by slopes of the WO cumea. ?he broken a w e  corresponds to K(vi )  and the full 
curve to K.(vi). 

is obtained using (3, and the perturbation expansion of only tenth order which gave 32 
values of the function L l ( m / n )  via (4). The curves ( E ,  log N ( E ) )  for the two sets coincide 
within the accuracy, which shows that the scaling of K ( u )  and &(U) are numerically the 
same. We then proceeded to calculate the fractal dimensions of the graph (U. K , ( u ) )  by 
estimating a limit of fractal dimensions of subsets of the graph with successively larger 
number of points including those that are close to the rationals. The results are presented 
in figures 4 and 5. 

For the standard map and the two-waves model we have no direct way of calculating 
the critical function at a number of points which is sufficient for estimating dimensions. An 
application of the Greene criterion to obtain the critical function at let us say 5000 points 
is practically impossible. So in these two cases we calculated the fractal dimensions of 
the approximate critical functions only, and obtained that they coincide, within the error, 
with the fractal dimensions for the semi-standard map. Finally we calculated the fractal 
dimensions of the exponent of the Brjuno function and obtained the same numbers within 
the accuracy of the computations. We conclude that the spectra of calculated dimensions 
are numerically the same. The spectra are illustrated in figure 5. 

Let us now briefly describe the algorithm which we used for calculations of the fractal 
dimensions. We take a sequence of E ,  to be of the form E" = 2-", and identify all points 
in a box of size G." with one of the comers. The identification is achieved by chopping 
all digits after the nth in the binary expansion. After the identification the number of the 
same points gives the number of points in a box and the number of distinct points gives 
the number of boxes. In this way all the information which is needed for the calculation 
of dimensions is stored in a one-dimensional array. A similar algorithm has been proposed 
in [21]. 
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determined by the fact that K ( u )  and its Gauss transform K ( d )  form the continuous function 
Ll (v ) .  From these two results we conclude that the complexity of the critical functions 
for a class of Hamiltonian systems are practically indistinguishable. The complexity is 
determined by the arithmetic nature of the problem of small denominators and not by the 
particular form of the dynamics. 

The results of numerical calculations presented in this paper need theoretical explanation. 
These results should also be extended to other systems with small denominators. 
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